首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8381篇
  免费   1512篇
  国内免费   958篇
化学   6209篇
晶体学   76篇
力学   501篇
综合类   48篇
数学   1052篇
物理学   2965篇
  2024年   3篇
  2023年   204篇
  2022年   225篇
  2021年   285篇
  2020年   461篇
  2019年   392篇
  2018年   346篇
  2017年   278篇
  2016年   408篇
  2015年   422篇
  2014年   515篇
  2013年   630篇
  2012年   775篇
  2011年   832篇
  2010年   550篇
  2009年   493篇
  2008年   482篇
  2007年   454篇
  2006年   474篇
  2005年   360篇
  2004年   276篇
  2003年   228篇
  2002年   266篇
  2001年   160篇
  2000年   157篇
  1999年   177篇
  1998年   129篇
  1997年   123篇
  1996年   138篇
  1995年   108篇
  1994年   96篇
  1993年   63篇
  1992年   65篇
  1991年   57篇
  1990年   46篇
  1989年   42篇
  1988年   36篇
  1987年   17篇
  1986年   25篇
  1985年   21篇
  1984年   12篇
  1983年   3篇
  1982年   1篇
  1981年   6篇
  1980年   1篇
  1957年   3篇
  1935年   1篇
  1931年   1篇
  1930年   3篇
  1922年   1篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
41.
Flexible asymmetric supercapacitors are more appealing in flexible electronics because of high power density, wide cell voltage, and higher energy density than symmetric supercapacitors in aqueous electrolyte. In virtues of excellent conductivity, rich porous structure and interconnected honeycomb structure, three dimensional graphene aerogels show great potential as electrode in asymmetric supercapacitors. However, graphene aerogels are rarely used in flexible asymmetric supercapacitors because of easily re-stacking of graphene sheets, resulting in low electrochemical activity. Herein, flower-like hierarchical Mn3O4 and carbon nanohorns are incorporated into three dimensional graphene aerogels to restrain the stack of graphene sheets, and are applied as the positive and negative electrode for asymmetric supercapacitors devices, respectively. Besides, a strong chemical coupling between Mn3O4 and graphene via the C-O-Mn linkage is constructed and can provide a good electron-transport pathway during cycles. Consequently, the asymmetric supercapacitor device shows high rate cycle stability (87.8 % after 5000 cycles) and achieves a high energy density of 17.4 μWh cm−2 with power density of 14.1 mW cm−2 (156.7 mW cm−3) at 1.4 V.  相似文献   
42.
Dehydration of (S,S)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethane-1,2-diol (H4L) to (Z)-1,2-bis(1H-benzo[d]imidazol-2-yl)ethenol) (H3L′) was found to be metal-assisted, occurs under solvothermal conditions (H2O/CH3OH), and leads to [MnII4(H3L)4Cl2]Cl2 ⋅ 5 H2O ⋅ 5 CH3OH ( Mn4L4 ) and [MnII4(H2L′)63-OH)]Cl ⋅ 4 CH3OH ⋅ H2O ( Mn4L′6 ), respectively. Their structures were determined by single-crystal XRD. Extensive ESI-MS studies on solutions and solids of the reaction led to the proposal consisting of an initial stepwise assembly of Mn4L4 from the reactants via [MnL] and [Mn2L2] below 80 °C, and then disassembly to [MnL] and [MnL2] followed by ligand modification before reassembly to Mn4L′6 via [MnL′], [MnL′2], and [Mn2L′3] with increasing solvothermal temperature up to 140 °C. Identification of intermediates [Mn4LxL′6−x] (x=5, 4, 3, 2, 1) in the process further suggested an assembly/disassembly/in situ reaction/reassembly transformation mechanism. These results not only reveal that multiple phase transformations are possible even though they were not realized in the crystalline state, but also help to better understand the complex transformation process between coordination clusters during “black-box” reactions.  相似文献   
43.
Novel nanomaterials and advanced nanotechnology continuously push forward the rapid development of sustainable energy conversion and storage equipment. An emerging family of two-dimensional transition-metal carbides, nitrides and carbonitrides, also known as MXenes, have attracted increasing attention and in depth investigation. Benefitting from their unique intrinsic properties, MXenes have attracted significant attention and they have been considered as promising candidate materials for the development of environmentally friendly energy resources. A large number of studies show that MXenes have great potential in energy conversion and storage fields. Despite of their exceptional properties, MXenes also have some inherent characteristics, such as low capacities and unstable retention performances, which severely hinder their prospect applications in energy conversion and storage fields. In this Minireview, the latest progress on MXenes and their hybrid composites with small molecules, polymers, carbon or metal ions, and their applications in energy conversion and storage fields is highlighted, including their use in different types of batteries, supercapacitors, hydrogen/oxygen evolution reactions, electromagnetic interference absorption/shielding and solar steam generation. In addition, the critical challenges and further development prospects of MXene-based materials are also introduced.  相似文献   
44.
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3TG3TG3TG3) (TTT) and its stacked higher-order structures is explored. Insertion of 3′–3′ or 5′–5′ IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4–G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.  相似文献   
45.
In this study, we demonstrate that an Mn-doped ultrathin Ni-MOF nanosheet array on nickel foam (Mn0.1-Ni-MOF/NF) serves as a highly capacitive and stable supercapacitor positive electrode. The Mn0.1-Ni-MOF/NF shows an areal capacity of 6.48 C cm−2 (specific capacity C: 1178 C g−1) at 2 mA cm−2 in 6.0 m KOH, outperforming most reported MOF-based materials. More importantly, it possesses excellent cycle stability to maintain 80.6 % capacity after 5000 cycles. An asymmetric supercapacitor device utilizing Mn0.1-Ni-MOF/NF as the positive electrode and activated carbon as the negative electrode attains a high energy density of 39.6 Wh kg−1 at 143.8 Wkg−1 power density with a capacitance retention of 83.6 % after 5000 cycles.  相似文献   
46.
Pitch has been used to prepare electrodes by high-temperature heat treatments for supercapacitors, lithium-ion batteries, on account of its rich aromatic ring structure. Here, the toluene-soluble component of pitch is used to prepare a kind of laminated carbon. This was realized by a template-free synthesis at low temperature with the addition of pressure. The toluene-soluble component has a small molecular weight, which makes the thermal deformation ability stronger and then enhances the orientation of the carbon layer with the help of pressure. The prepared anode exhibits a splendid electrochemical performance compared with the traditional graphite anode. A high stable capacity of approximately 550 mAh g−1 at 50 mA g−1, which is much higher than graphite (372 mAh g−1), is obtained. Also, when the current density is up to 2 A g−1, the capacity is about 150 mAh g−1. Surprisingly, it also delivers a superior cycling performance. And when used as the anode/cathode electrode for lithium-ion capacitors, a high energy density can be obtained. The present work offers an opportunity to utilize the pitch source in lithium energy storage with promising cycle life, high energy/power density, and low cost.  相似文献   
47.
48.
本实验通过模拟植物光合作用,设计制备了新颖的光电联合催化池3D-ZnO/Ni BiVO4/FTO,用电化学沉积法制备了泡沫镍负载的ZnO纳米棒光电阴极和BiVO4光电阳极,以0.1 mol·L^−1 KHCO3水溶液作为电解质,1 mmol·L^−1曙红Y为光敏剂,在−0.6 V硅太阳电池的电压下光电催化还原CO2得到了乙醇、乙酸和甲醇,总产率22.5μmol·L^−1·h^−1·cm^−2。实现了将太阳能贮存为化学能并减少了空气中的CO2,加深了学生对绿色化学和植物Calvin循环机理的理解。  相似文献   
49.
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 μL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.  相似文献   
50.
Journal of Radioanalytical and Nuclear Chemistry - The stable isotope-labeled rosuvastatin was requested in order to fully understand the metabolic process of rosuvastatin. An effective synthesis...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号